85 research outputs found

    Growth Cone Pathfinding: a competition between deterministic and stochastic events

    Get PDF
    BACKGROUND: Growth cone migratory patterns show evidence of both deterministic and stochastic search modes. RESULTS: We quantitatively examine how these two different migration modes affect the growth cone's pathfinding response, by simulating growth cone contact with a repulsive cue and measuring the resultant turn angle. We develop a dimensionless number, we call the determinism ratio Ψ, to define the ratio of deterministic to stochastic influences driving the growth cone's migration in response to an external guidance cue. We find that the growth cone can exhibit three distinct types of turning behaviors depending on the magnitude of Ψ. CONCLUSIONS: We conclude, within the context of these in silico studies, that only when deterministic and stochastic migration factors are in balance (i.e. Ψ ~ 1) can the growth cone respond constructively to guidance cues

    The Interplay between Branching and Pruning on Neuronal Target Search during Developmental Growth: Functional Role and Implications

    Get PDF
    Regenerative strategies that facilitate the regrowth and reconnection of neurons are some of the most promising methods in spinal cord injury research. An essential part of these strategies is an increased understanding of the mechanisms by which growing neurites seek out and synapse with viable targets. In this paper, we use computational and theoretical tools to examine the targeting efficiency of growing neurites subject to limited resources, such as maximum total neural tree length. We find that in order to efficiently reach a particular target, growing neurites must achieve balance between pruning and branching: rapidly growing neurites that do not prune will exhaust their resources, and frequently pruning neurites will fail to explore space effectively. We also find that the optimal branching/pruning balance must shift as the target distance changes: different strategies are called for to reach nearby vs. distant targets. This suggests the existence of a currently unidentified higher-level regulatory factor to control arborization dynamics. We propose that these findings may be useful in future therapies seeking to improve targeting rates through manipulation of arborization behaviors

    Swimming in Granular Media

    Full text link
    We study a simple model of periodic contraction and extension of large intruders in a granular bed to understand the mechanism for swimming in an otherwise solid media. Using an event-driven simulation, we find optimal conditions that idealized swimmers must use to critically fluidize a sand bed so that it is rigid enough to support a load when needed, but fluid enough to permit motion with minimal resistance. Swimmers - or other intruders - that agitate the bed too rapidly produce large voids that prevent traction from being achieved, while swimmers that move too slowly cannot travel before the bed re-solidifies around them i.e., the swimmers locally probe the fundamental time-scale in a granular packing

    Evaluation of Target Search Efficiency for Neurons During Developmental Growth

    Get PDF
    In this work we investigated how branching and pruning influence the probability of successfully connecting to neurons located at different locations away from the initiation point, under the assumption that the neuron has finite growth resources. We find out that balanced branching and pruning, and the distance to target are essential in determining the optimal growth parameters

    Effects of reduced gravity on the granular fluid-solid transition: underexplored forces can dominate soft matter behaviors

    Full text link
    Granular media are soft matter systems that exhibit some of the extreme behavior of complex fluids. Understanding of the natural formation of planetary bodies, landing on and exploring them, future engineering of structures beyond Earth and planetary defense all hinge on the ability to predict the complex mechanical behavior of granular matter. As we understand them, these behaviors are linked to the granular fluid to solid transition. In this white paper, we describe issues that emerge for granular systems under reduced gravity and their implications for basic science and space exploration. (Topical White Paper submitted to the NASA Biological and Physical Sciences in Space Decadal Survey 2023-2032)Comment: arXiv admin note: text overlap with arXiv:1002.247

    Effects of Polarization on Particle-Laden Flows

    Get PDF
    • …
    corecore